
2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING and TECHNOLOGY SYMPOSIUM

MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM

AUGUST 17-19 DEARBORN, MICHIGAN

HEURISTICS-ENHANCED DEAD-RECKONING FOR IMPROVED
SITUATION AWARENESS WITH TELE-OPERATED ROBOTS

Johann Borenstein, D.Sc.
Dept. of Mechanical Engineering

The University of Michigan
Ann Arbor, MI

Adam Borrell
Dept. of Mechanical Engineering

*

The University of Michigan
Ann Arbor, MI

Russ Miller
Dept. of Mechanical Engineering

The University of Michigan
Ann Arbor, MI

David Thomas
Dept. of Mechanical Engineering

The University of Michigan
Ann Arbor, MI

ABSTRACT

This paper presents a practical and easy to implement method for tracking the position of
tele-operated Unmanned Ground Vehicles (UGVs) inside buildings, where GPS is unavailable.
In conventional dead-reckoning systems, which typically use odometry combined with a single-
axis gyro or an Inertial Measurement Unit (IMU), heading errors grow without bound. For that
reason, tracking the position of tele-operated UGVs for more than a few minutes becomes
unfeasible. Our method, called Heuristics-Enhanced Dead-reckoning (HEDR), overcomes this
problem by completely eliminating heading errors at steady state in tele-operated missions of
unlimited duration. As a result, HEDR allows the plotting of very accurate trajectories on the
Operator Console Unit (OCU). When overlaid over an aerial photo of a building, the real-time
trajectory display gives the operator crucial information about position and heading of the UGV
relative to the building. This feature offers the operator much improved situation awareness that
is not provided by the conventional video feed from onboard cameras.

1 INTRODUCTION

Tele-operators of small Unmanned Ground Vehicles (UGVs) usually have to rely on the video
stream from an onboard camera as feedback. The video pictures alone hardly ever allow the

* Adam Borrell was with the University of Michigan when this work was conducted. He is now with Boston Dynamics, Boston,
MA.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

2

operator to establish the orientation or whereabouts of the UGV in its environment. Some
Operator Console Units (OCUs), such as that for iRobot’s Packbot, offer a second window on
which the trajectory of the UGV is plotted, but only if GPS is available. Indoors, where GPS is
always unavailable, this screen is blank, presumably because the onboard dead-reckoning
degrades over time and becomes too inaccurate to be useful after just a few minutes of driving
[1].

Much research has focused on improving dead-reckoning capabilities for unmanned vehicles.
For example, a common approach especially for tracked vehicles is to combine odometry with at
least one gyroscope [2] or with a complete inertial measurement unit (IMU) [3]. The accuracy of
these methods depends to a large degree on the quality of the gyro. Inexpensive (e.g., MEMS-
based) gyros tend to produce heading errors at a rate of up to tens of degrees per minute. Fiber
optic gyros produce errors at much lower rates, on the order of a few degrees per hour, but these
gyros cost thousands of dollars.

To overcome this problem, we developed a heuristics-based method that tracks tele-operated
UGVs with great accuracy, even with low cost MEMS gyros. Indeed, our method, called
Heuristics-enhanced Dead-reckoning (HEDR), completely eliminates heading errors due to gyro
drift when used inside buildings. HEDR produces a trajectory that has zero heading errors at
steady state and, consequently, extremely small position errors (on the order of <1% of distance
traveled).

HEDR exploits the fact that driving in structured, indoor environments mostly happens along
straight corridors or walls, and that most corridors and walls intersect perpendicularly. We call
the directions of corridors and other indoor travel paths that meet these requirements “dominant
directions.”

The foremost strength of the HEDR method is that it is tolerant to deviations from the
heuristic assumptions. For example, zigzagging down a corridor, as happens often when tele-
operators are disoriented, does not impede the effectiveness of HEDR, as long as the corridor is
generally aligned with a dominant direction. Whenever HEDR detects that the UGV is not
driving along a dominant direction, HEDR suspends its corrective action and accrues drift and
thus heading and position errors—just as any other gyro-based dead-reckoning system does.
However, once the driving in a dominant direction resumes, drift is again eliminated and heading
errors gradually return to zero.

2 HEURISTICS-ENHANCED DEAD-RECKONING (HEDR)

This section is a duplication of work already published in an earlier paper (Proceedings of the
SPIE Defense, Security + Sensing Symposium, 2010 [3]). We duplicate that section here for
completeness and for the reader’s convenience.

The HEDR method effectively eliminates gyro errors due to drift and other slow-changing
errors. In suitable indoor environments, HEDR maintains zero heading errors in drives of
unlimited duration, at steady state. However, these desirable performance characteristics are
achieved only in environments that match certain heuristic assumptions, discussed next.

2.1 The Heuristic Assumptions

HEDR works in environments, in which possible heading angles are limited. For example, in
man-made structures most corridors are straight and either parallel or orthogonal to each other

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

3

and to the peripheral walls. We will call the typical directions of walls and corridors the
“dominant” directions of the building. In the huge majority of buildings there are only four
dominant directions. One can easily verify this observation by looking at aerial or satellite photos
of city and rural buildings: with very few exceptions, residential and business buildings have
rectangular footprints, suggesting that most corridors and walls inside follow four dominant
directions. Among the rare exceptions, we found empirically that the most frequent one is that of
corridors angled at 45 degrees to others. In order to account for this exception, our heuristic
assumptions actually allow for eight dominant directions, spaced at 45-degree intervals.
Informally, we estimate that well over 99 percent of all man-made structures have four or eight
dominant directions. Prominent exceptions are the Pentagon, some architectural landmarks such
as theaters, opera houses, and some large hotel complexes, and indoor sports arenas. In these
structures, as well as in many tunnels and all natural caves, HEDR cannot be used.

We call driving that complies with the heuristic assumptions (i.e., driving along a dominant
direction) “compliant” driving. The strength of HEDR lies in the fact that it applies corrections
only gradually, when it believes driving to be compliant, and it reduces or suspends its
corrections when driving is not compliant. While prolonged non-compliant motion may render
HEDR ineffective, the method is nonetheless very robust in the face of short non-compliance.
For example, HEDR will easily tolerate the crossing of a large hall (e.g., in a mall or warehouse)
at an angle other that 90°.

In all other, “normal” environments, HEDR detects when motion matches one of the eight
dominant directions and gradually corrects gyro output so that the combined effect of drift and
HEDR correction is such that the computed heading of the tele-operated vehicle matches the
closest dominant direction. When the vehicle turns, HEDR suspends its corrective action. While
HEDR is suspended, drift causes new heading errors, but once HEDR resumes, it effectively
eliminates accrued heading errors because it gradually forces headings to be aligned with the
closest dominant directions. When motion is mostly compliant, HEDR assures zero heading
errors in drives of unlimited duration at steady state. Steady state is usually reached within a few
seconds of compliant motion after turning. With heading errors eliminated, position errors
remain orders of magnitude smaller than with conventional dead-reckoning. The resulting small
position errors make it possible to track the position of tele-operated vehicles accurately and
reliably over extended periods of time.

HEDR works generally with any dead-reckoning system that uses one or more gyros for
measuring rate of yaw to compute the vehicle’s heading. Moreover, HEDR is extremely simple
and can be implemented in ~20 lines of program code and on low-cost microcontrollers.

In summary, HEDR applies two simple but highly effective heuristic assumptions:

1) Most travel inside buildings happens along straight lines, called “dominant directions.”
Dominant directions are defined by the typically rectangular footprint of man-made structures.
Corridors, walls, or traffic patterns typically force traffic to follow dominant directions.
Zigzagging within a corridor adds a little noise, but has otherwise no negative effect on
HEDR.

2) There are nominally four dominant directions in a building, spaced at 90-degree intervals.
However, as we will see in the following section, it is practical to broaden the heuristic
assumptions and define eight dominant directions, spaced at 45-degree intervals.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

4

2.2 General heading estimation

Tele-operated vehicles are often equipped with single z-axis gyros or even inertial
measurement units (IMUs) for dead-reckoning. When driving straight forward, the output of the
z-axes gyro should be exactly zero. However, due to drift the actual output is off by some small
value ε.

Due to the drift error ε, in each sampling interval the rate of rotation computed based on the z-
axis gyro is

ωraw = ωtrue + ε0 + εd (1)

where

ωraw – Rate of rotation measurement. This is the direct output of the gyro.

ωtrue – True rate of rotation. In reality ωtrue is not known or measured. We only know that when
driving straight forward, ωtrue = 0.

ε0 – Static bias drift, measured immediately prior to a drive, while the vehicle is standing still.

εd – Bias drift. This is the difference between the static bias drift ε0 and the unknown slow-
changing drift component.

Immediately prior to each drive and with the gyro held completely motionless, the static bias
drift ε0 is measured by averaging Tbias worth of gyro data. The value of Tbias depends on the
characteristics of the gyro and a detailed discussion of this subject is beyond the scope of this
paper.

During the drive, ε0 is subtracted from every reading of ωraw:

ωmeas = ωraw - ε0 = ωtrue + εd (2)

Then, the new heading ψi is computed

ψi = ψi-1 + ωmeas,i T (3)

where

ψi – Computed heading after interval i, in [°].

ωmeas,i – ω after removing static bias drift, in [°/sec].

T – sampling time in [sec].

When driving straight forward, ωtrue = 0, and ψ = εd T. If we further assume that the driving
happens along the first of the four or eight dominant directions, which we define as being aligned
with 0°, then ψi should be zero. If it is not, then it must be so because of drift, εd. Moreover, since
drift is a slow-changing phenomenon, the sign of εd and thus also of ψ will stay the same over
many successive intervals. We therefore hypothesized that it might be possible to track and
estimate εd by examining the sign of ψ. While this hypothesis might seem somewhat optimistic,
the HEDR algorithm does exactly that and more. In the following sections we explain how the
HEDR algorithm:

 Reduces driving in any of the nominally four or more dominant directions to the functional
equivalent of driving in a direction of zero degrees.

 Models εd as a disturbance in a feedback control system

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

5

 Estimates the magnitude of this disturbance by examining the content of the accumulator in
the I-controller of that feedback control circuit.

 Remains largely insensitive to additional, large-amplitude disturbances of short duration.

2.3 The Basic HEDR Method

As explained, the HEDR algorithm assumes that a building has four or eight dominant
directions, Ψ. In order to keep the discussion in this section intuitive, we will explain the HEDR
method for four dominant directions. In that case, dominant directions are spaced at 90-degree
intervals and we call this interval the “dominant direction interval,” Δ.

A further assumption is that most corridors and inside walls in a rectangular-footprint building
run parallel to its dominant directions. If this assumption is true, then one can further assume that
most driving in such buildings is also done along dominant directions. For the HEDR algorithm
to work well, this latter assumption does not have to hold true all of the time.

The basic HEDR algorithm
functions essentially like a
feedback control system. This is
different from most other
measuring systems, where signals
pass from the sensor to the
instrument’s output in open-loop
fashion. Figure 1 shows a block
diagram of the feedback control
system for the HEDR algorithm.
Before we explain the overall
function of this feedback control
system, it is necessary to define in
detail the function of the block
labeled “MOD(θ,Δ).”

Use of the MOD function

A “MOD” function is available
in different programming
environments, but we found that its definition varies, especially with regard to treating negative
numbers. In the context of this paper we use the implementation found in Microsoft Excel. In
Excel, the MOD function has two arguments, (n, d). MOD(n, d) returns the remainder after n is
divided by d, and the result has the same sign as d. In programming environments, in which the
MOD function performs differently, the Excel version can be emulated by this formula:

MOD(n, d) = n – d INT(n/d) (4)

Where INT(r) is a function that rounds a real number r down to the nearest integer. For
example: INT(-0.3) = -1.

When n and d are angles in the Cartesian coordinate system used throughout this paper, then
MOD(n,d) performs a highly useful function: it maps an angle of any magnitude n onto a sector
that is bounded on one side by the positive x-axis and that has a central angle of d. As an
example, consider the two sub-sectors labeled ‘R’ and ‘L’ in Figure 2. Together, these two sub-

Binary
I-controller

Gyro
(adds ε0+εd,i)

+

-

+
+

+
-

IiEi
Integral ψi

MOD(ψ,Δ)
1z

ψi-1

1z

z
ωi

ωtrue,i+ε0+εd,i

ωtrue,i

ε0

ψ*i-1

ψset= ½ Δ

ωmeas,i = ωtrue,i+εd,i

Figure 1: The HEDR algorithm viewed as a feedback control system.
The binary I-controller and the block labeled ‘MOD’ are explained in the
narrative.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

6

sectors form a sector with a central angle of d = 90° that coincides
with the first quadrant of a coordinate system. The function
MOD(n,90°) maps any angle n, which may be greater than 360° or
negative, onto Sectors R and L. Similarly, MOD(n,45°) maps any
angle n onto Sector L.

In the feedback control system of the HEDR algorithm, block
MOD(θ,Δ) with Δ = 90° maps any heading angle onto either Sub-
sectors R or L of Figure 2. The functional significance of applying
MOD(θ,Δ=90°) is this: In a building with the four dominant
directions Ψ = 90°, 180°, 270°, and 360° (= 0°) any momentary
heading direction θ that is immediately to the right of any of these
four dominant directions will be mapped into Sub-sector R. Similarly,
any heading direction that was immediately to the left of any of these four dominant directions
will be mapped into Sub-sector L. With “immediately to the right” we mean angles that are
between Ψ and Ψ-Δ/2 (the solid blue sectors in Figure 2), while “immediately to left” means
between Ψ and Ψ+Δ/2 (the dotted green sectors in Figure 2).

As an example, consider a momentary heading of θ = -25°, which is immediately to the right
of the dominant direction Ψ = 0°. The result of applying the MOD function is MOD(-25°,90°) =
65°. 65° is also immediately to the right of a dominant direction, namely Ψ = 90°. If the vehicle
turned three full revolutions in counter-clockwise direction, then the vehicle’s heading should
still be immediately to the right of a
dominant direction. In the HEDR
system, the vehicle’s new heading
would be represented as θ = -25° +
3360° = 1055°. The MOD function
maps the new heading right back to
θ* = MOD(1055°,90°) = 65° which is,
as before, immediately to the right of a
dominant direction. Table I illustrates
how with the help of the MOD function
we can perform a simple test to see if a
momentary heading angle is immediately to the right or left of any dominant direction.

2.3.1 The HEDR Feedback Control System

We start the explanation of the feedback control system with the signal from the gyro, which
is modeled as a disturbance in the block diagram of Figure 1. For the purpose of explaining the
feedback control system, let us assume that the vehicle is driving straight ahead and in a
dominant direction. We will discuss how the algorithm handles cases when this assumption is
not true later. When driving straight, ωtrue= 0, so the only output from the gyro, after subtracting
the static bias drift ε0, is drift, εd.

This signal is added to the output of the binary I-controller, which will be explained later in
this section. Initially, the output of the I-controller is zero, so εd is passed through to a numeric
integrator, which computes the relative change of heading, ψi.

2

R

L

Figure 2: Angle mapping with
the MOD function.

Table I: Relationship of θ* to MOD(θ,Δ) with regard to dominant
directions.

θ* Significance

> Δ/2 θ immediately to the right of a dominant direction Ψ

= Δ/2 θ perfectly in-between adjacent dominant directions Ψ

< Δ/2 θ immediately to the left of a dominant direction Ψ

= 0 θ perfectly aligned with a dominant direction Ψ

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

7

After the first iteration, when i>1, the control loop can be closed by submitting the previous
value of ψ, ψi-1, to the MOD function. The label ‘z-1’ in the feedback loop is the common
notation for a pure delay of one sampling interval. As explained before, MOD(ψ,Δ) maps θ onto
a direction that lies between 0 and Δ.

ψ*i = MOD(ψi-1,Δ) (5)

where

ψ*i – Mapped heading that lies between 0 and Δ, in degrees.

ψ *i is then compared to the fixed set point, ψ set = Δ/2, resulting in an error signal

Ei = Δ/2 - ψ *i (6)

This brings us to the binary I-controller. Unlike conventional integral (I) or proportional-
integral (PI) controllers, the binary I-controller is designed not to respond at all to the magnitude
of E. Rather, it only responds to the sign of E. If E is positive (i.e., heading points to the left of a
dominant direction), then a counter (called “Integrator” or “I”) is incremented by a fixed small
increment, ic. If E is negative (i.e., heading points to the right of the dominant direction), then I is
decremented by ic. In this fashion, and although the controller does not respond to the magnitude
of E immediately, repeated instances of E having the same sign will result in repeated
increments or decrements of I by ic.

The reason for using a binary I-controller is that the ideal condition Ψ* = 0° (i.e., Ψ* being
perfectly aligned with one of the dominant directions) is rarely met. Indeed, Ψ* can differ from
zero by tens of degrees, for example, when the vehicle is turning. In that case a conventional
I-controller would not work well, since it would respond strongly to the large value of E, even
though large E are not necessarily an indication for a large amount of drift. The proposed binary
I-controller, on the other hand, is insensitive to the magnitude of E. Rather, the controller reacts,
slowly, to E having the same sign persistently.

As established by Eq. (6), if ψ*>ψset then ψ* is immediately to the right of Ψ, and if ψ*< ψset

then ψ* is immediately to the left of Ψ. During straight-line driving along a dominant direction
Ψ, a heading to the right of Ψ suggests that the only possible source for this error, εd, had a
negative value. To counteract this error, the binary I-controller adds the small increment, ic to the
Integrator. Conversely, if ψ*<ψset, then the Integrator is decremented by ic.

We can now formulate the binary I-controller

0for

0for

0for

1

1

1

EiI

EI

EiI

I

ci

i

ci

i (7a)

where

ic – fixed increment, also considered the gain of the binary I-controller in units of degrees

An alternative way of writing Eq. (7a) is

ciii iII)
2

(SIGN *
11

 (7b)

where SIGN() is a programming function that determines the sign of a number. SIGN(x) returns
‘1’ if x is positive, ‘0’ if x = 0, and ‘-1’ if x is negative.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

8

The next element in the control loop adds the controller output to the raw measurement

ωi = ωtrue,i + εd,i + Ii (8)

where

ωi – Corrected rate of rotation [°/sec].

If I -εd, as we assume for now to be the case under ideal conditions, in steady state, and
because of the I-controller in the feedback control system, then by substituting I -εd in Eq. (8)
we would get ωi ωtrue,i.. This result would be desirable, since the unknown slow-changing drift
component is removed. In practice, though, neither ωtrue nor εd are known. Instead, we only know
the measured ωmeas,i = ωtrue,i + εd,i.

We rewrite Eq. (8) accordingly:

ωi = ωmeas,i + Ii (9)

Substituting Eq. (5) and Eq. (7b) in Eq. (9) yields:

)

2
),((SIGN 11, iciimeasi MODiI (10)

Equation (10) represents the complete HEDR algorithm. When applied to the output of a z-
axis gyro, ωmeas,i, of a tele-operated vehicle, the algorithm will effectively remove drift and other
slow-changing errors. An additional benefit is that the momentary value of I is an accurate
estimate of these errors. The only tunable parameter in the algorithm is ic. A good starting point
for tuning ic is at about ten times the estimated magnitude of the drift rate, in deg/sec.

Additional refinements are possible and were used in our system but are omitted in this paper
because of space limitations.

3 THE EXPERIMENTAL SYSTEM

We chose to test and validate the HEDR algorithm on a simple commercial off-the-shelf
COTS skid-steer tracked platform available from Lynxmotion [4]. We outfitted each track with a
DC gear-head drive motor with an optical encoder, and connected each to a separate drive output
of a serial motor controller. To complement the motor encoders we added a low-cost ($300)
MEMS gyroscope to the platform, the CruizCore XG1010 made by Microfinity [5]. For visual
feedback to a remote operator, we selected a COTS 802.11n wireless webcam capable of
transmitting Real Time Streaming Protocol (RTSP) video and audio over an infrastructure or ad-
hoc wireless network. We mounted the camera on a hobby-servo driven pan/tilt platform,
controlled by a serial servo controller. Throughout this paper, we refer to this platform as
“Trackey” (Figure 3).

To complete the robot side of the experimental system we mounted a custom PCB on the
platform, including a serial radio and an 8-bit microcontroller. The motor controllers draw power
directly from an on-board NiMH battery pack, while the custom PCB is powered through a 5V
switching DC/DC converter. The microcontroller directly samples and decodes quadrature
encoder signals from the left and right tracks using hardware interrupt pins. The microcontroller
also receives serial packets from the gyro and processes them to extract the measured rate of
rotation. The microcontroller applies the HEDR algorithm to the encoder and gyro data, and uses

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

9

parameters of the vehicle (encoder resolution,
effective track sprocket diameter, etc.) to
calculate the HEDR-corrected position and
heading of the vehicle in real time. This
information is transmitted over the serial radio
to the Operator Console Unit (OCU).

The OCU, shown in Figure 4) consists of a
small tablet-style laptop mounted on a sheet-
plastic plate. We mounted two analog
joysticks (similar to those used in videogame
controllers) to the sides of the plate, and
another custom microcontroller board with a
serial radio and a USB to serial adapter to the
back of the plate. This microcontroller
receives the position packets transmitted by
the robot over the serial radio link, and passes
them on to the laptop through the USB to
serial adapter. Robot trajectory is displayed in
real time by our custom plotting software.
Streaming video from the robot is received
using the laptop’s internal wireless card and
displayed beside the trajectory plot. The OCU
microcontroller also samples the positions of
the joysticks using a Digital to Analog
Converter (DAC), and generates and transmits
control packets to the robot. These packets are
received by the robot’s serial radio, and
processed by its microcontroller into
commands for the motor and servo controllers.
One joystick controls the motion of the robot,
while the other aims the pan/tilt camera
platform.

4 EXPERIMENTAL RESULTS

In order to test the effectiveness and accuracy of the HEDR system, we performed five tele-
operated test runs with Trackey in various indoor environments. In all five runs a tele-operator
controlled Trackey remotely, using the view of the onboard camera and the HEDR-based
trajectory plot for feedback. A photo of the operator’s console during a run is shown in Figure 5.

At no time did the operator have a direct line of sight to the UGV. We emphasize this fact
because under these conditions, tele-operated driving is much more erratic than driving with a
direct line of sight. Also, the tele-operator had to cope with real reductions in frame rate that are
typical in tele-operated robots once the robot gets further away from the operator, as well as with
degraded video quality. With frame rates as low as one frame per second, turning often results in
significant overshoot. Under these conditions, the HEDR system is fully challenged since some
of the driving is zigzagging and otherwise not very straight, even in straight corridors.

Figure 3: Our small, tracked robot Trackey served as the
test platform for this project.

Figure 4: Operator Console Unit with tablet style laptop,
dual joysticks, and serial radio (mounted underneath) for
transmitting joystick commands.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

10

In all five runs the robot started at a position
labeled (0,0) and at the end of the run stopped at
that exact same position. At the stopping
position we compared the computed final
position based on dead-reckoning and based on
HEDR with the actual final position (0,0). The
difference between the two is called the Return
Position Error (RPE). The RPE is not a great
indicator for the accuracy of a tracking system,
since it is quite possible to have large heading
errors but very small RPEs. In the case here,
however, it would have been too tedious to try
and compile ground truth for position in each
run. We also did not see the need for that effort
since we are providing plotted results for the
five runs in Figure 6 .

The five runs took
between 27 and 50 minutes
to complete. Run 1 is about
20 minutes longer than the
others because it includes a
20-minute segment of
complete standstill at an
arbitrary angle. With that
we wanted to emulate the
conditions of persistent
stare, which is of interest
for security applications.
Table II shows a summary
of the specific conditions of
each run, along with some
numeric results.

It is of interest to note that in our earlier paper [3], which provides experimental results for
HEDR implemented on a Packbot, the Average Relative RPE for six runs under more
challenging conditions was 0.36% – almost exactly the same as in the series of experiments
described here for the Trackey platform.

In order to show the absolute accuracy of HEDR-derived trajectories, we overlaid the
trajectory of a 20-minute drive over the floor plan of the building in which the drive took place,
in Figure 7. In a realistic military scenario, floor plans are likely not available, but the trajectory
could be overlaid over a satellite or aerial photo of the building.

Figure 5: The display of the Operator Console Unit
(OCU) during a tele-operated drive. The left-hand pane
shows the video picture from the robot. The right-hand
pane shows the trajectory of the robot as it develops in
real-time.

Table II: Specifications and results for the five Trackey runs.

Run #

Total
duration

[minutes]

Total
travel

distance

[meters]

Return
position

error (RPE)

[meters]

Relative RPE as
percentage of

distance
traveled [%]

1 50.0 1,260 3.43 0.27%

2 30.9 1,147 2.12 0.33%

3 32.6 1,181 2.37 0.20%

4 31.0 1,147 2.12 0.18%

5 27.3 880 6.02 0.68%

Average 34.4 1,123 3.21 0.33%

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

11

Trackey Run 1

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25

X [m]

Y
[m

]

Heuristics-corrected

Uncorrected

Z

Trackey Run 2

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10

X [m]

Y
[m

]

Heuristics-corrected

Uncorrected

Z

Trackey Run 3

-25

-20

-15

-10

-5

0

5

10

15

20

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

X [m]

Y
[m

]

Heuristics-corrected

Uncorrected

Z

Trackey Run 4

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10

X [m]

Y
[m

]

Heuristics-corrected

Uncorrected

Z

Trackey Run 5

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10

X [m]

Y
[m

]

Heuristics-corrected

Uncorrected

Z

Figure 6: Five indoor runs with Trackey. Thin red lines: conventional dead-reckoning; (thick green line heuristics-
enhanced dead-reckoning. Runs varied in duration between 27 to 50 minutes and in travel distance from 880 to 1,260
meters.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

12

5 CONCLUSIONS

In this paper we explained the “Heuristics-Enhanced Dead-reckoning” (HEDR) algorithm for
indoor tracking of tele-operated robots. We implemented HEDR in the Transferable Indoor
Position Tracking (TIPT) system.

In five carefully monitored indoor experiments we demonstrated that HEDR eliminates
heading error caused by gyro drift and other slow-changing sources of error, effectively
maintaining zero heading errors in drives of unlimited duration at steady state. As a direct result,
HEDR significantly reduces position errors, as accumulated heading errors are almost always the
primary source of position errors in a dead-reckoning system.

From the very small Return Position Errors (RPEs), which are all well below 1% of distance
traveled, one can derive several insights:

1. The HEDR method is indeed successful at containing heading errors, and doing so is helpful
for containing position errors.

Figure 7: Trackey’s trajectory after being driven through a large building, overlaid over a floor plan. In real
applications, the trajectory would be shown overlaid over an aerial image (if available) or a blank background.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

13

2. Once heading errors are effectively eliminated, position errors are very small even on tracked
vehicles—at least while traveling on benign, smooth terrain and when using a gyro for
estimating rates of turn.

Acknowledgements

This work was supported by The University of Michigan’s Ground Robotics Reliability
Center (GRRC), with funding provided by TARDEC, and with support from the U.S. Dept. of
Energy under Award No. DE FG52 2004NA25587.

6 REFERENCES

[1] Borenstein, J. and Feng, L., “Measurement and Correction of Systematic Odometry Errors
in Mobile Robots.” IEEE Transactions on Robotics and Automation, 12(6), 869-880
(1996).

[2] Chung, H., Ojeda, L. and Borenstein, J., “Accurate Mobile Robot Dead-reckoning With a
Precision-calibrated Fiber Optic Gyroscope.” IEEE Transactions on Robotics and
Automation, 17(1), 80-84 (2001).

[3] Borenstein, J., Miller, R., Borrell, A., and Thomas, D., 2010, “Heuristics-enhanced Dead-
reckoning (HEDR) for Accurate Position Tracking of Tele-operated UGVs.” Proceedings
of the SPIE Defense, Security + Sensing; Unmanned Systems Technology XII, Conference
DS117: Unmanned, Robotic, and Layered Systems. Orlando, FL, April 5-9, 2010.

[4] Lynxmotion, http://www.lynxmotion.com/

[5] Microfinity, Spec Sheet, http://www.cruizcore.com.

